Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations.

نویسندگان

  • Fabrizio Bisetti
  • Antonio Attili
  • Heinz Pitsch
چکیده

Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terascale direct numerical simulations of turbulent combustion — fundamental understanding towards predictive models

Advances in high-performance computational capabilities enable scientific simulations with increasingly realistic physical representations. This situation is especially true of turbulent combustion involving multiscale interactions between turbulent flow, complex chemical reaction, and scalar transport. A fundamental understanding of combustion processes is crucial to the development and optimi...

متن کامل

Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent rea...

متن کامل

Studies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement

The present study is concerned with measuring and simulating soot formation and combustion in turbulent liquid fuel spray flames. Soot concentrations inside the combustor are measured by filter paper technique. The simulation is based on the solution of the fully-coupled conservation equations for turbulent flow, chemical species kinetic modeling, fuel droplet evaporation and combustion and...

متن کامل

An Irregularly Portioned Lagrangian Monte Carlo Method for Turbulent Flow Simulation

A novel computational methodology, termed “Irregularly Portioned Lagrangian Monte Carlo” (IPLMC) is developed for large eddy simulation (LES) of turbulent flows. This methodology is intended for use in the filtered density function (FDF) formulation and is particularly suitable for simulation of chemically reacting flows on massively parallel platforms. The IPLMC facilitates efficient simulatio...

متن کامل

A Rigorous Asymptotic Perspective on the Large Scale Simulations of Turbulent Premixed Flames

An idealized model for turbulent premixed flames is introduced. It consists of a scalar advection-reaction-diffusion equation that describes the interaction of a thin flame with a turbulentlike flow field acting on two separate scales. Rigorous asymptotic results as well as affordable and reliable direct numerical simulations are available to predict the effective large scale behavior of the id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 372 2022  شماره 

صفحات  -

تاریخ انتشار 2014